
OPTIMIZATION OF EMPLOYEE WORKING SCHEDULE AMID COVID-19

A. MASANIKA1, A. SPIVAK2, C. HANRATTY3, W. M. ABDULLAH4

ABSTRACT. We report on a two-week COVID-19 motivated project to create employee
schedules aimed at limiting the percentage of the workforce in the workplace at any time
while keeping associated commute time to a minimum. The project was structured as
an optimization problem. Genetic algorithms were explored, adapted and implemented.
Preliminary results suggest this as a promising avenue justifying further efforts.

1. INTRODUCTION

Due to the outbreak of COVID-19 around the world, and government policies imple-
mented as a response to the outbreak, many corporations have chosen to let their employees
work from home to prevent the spread of the disease. In order to re-open the economy
safely with respect to the disease threat, one of the recommendations from health authori-
ties is to allow only a limited percentage of workers in the workplace at any specific time.
Given these constraints, it is useful for companies to arrange flexible work schedules so
that the employees are at the workplace during reasonable working hours. With changed
schedules and perhaps shorter work shifts come the risk of increased employee commute
time or increased ratio of commute time to work shift length. Thus it is desirable that these
new schedules be designed to reduce commute time as well. Another objective in reducing
commuting time is directly COVID-19 related: less time commuting poses a reduced risk
of an employee being exposed to the disease.

In this project, we design a mathematical model to address such a scheduling problem.
We implement a genetic algorithm to generate employees’ working-at-office schedule for
a model business satisfying certain reasonable criteria described in what follows and in the
following section.

We fix a workplace, the Salesforce Tower in San Francisco with a variable number of
employees. The city is divided into 39 neighborhoods numbered 0-38 and each employee’s
residence is identified with a number in this interval. Using Uber traffic data for n employ-
ees whose neighborhood locations are randomly generated, we seek to reduce commute
time while maintaining a fixed range on work shift length and aiming to keep the maximum
percentage of employees in the workplace at any time less than 35%.

We organize the rest of this report in the following way. In Section 2, we discuss the
mathematical representation of the problem followed by a description of our algorithm to
solve the stated problem. Results from numerical experiments on a standard collection of

1



2 A. MASANIKA1, A. SPIVAK2, C. HANRATTY3, W. M. ABDULLAH4

test instances are provided in Section 3. Conclusions drawn from these preliminary studies
follow in Section 4.

2. MATHEMATICAL MODEL AND THE GENETIC ALGORITHM

The mathematical representation of the problem and the algorithm deployed to solve the
problem are discussed in this section.

2.1. Model. This section is devoted to providing a mathematical model of the optimization
problem. We used the following parameters in our model.

• The total number of employees n = 200∼ 1000
• Zone of the company Sc
• Employees’addresses Si

e(i≤ i≤ n)
• The maximum percent of workers at the office aimed for is α = 25∼ 35%
• Working time window 7AM−9PM
• Employee’s weekly working hours T = 15∼ 25 hours
• Weekdays D = {M,T,W,T h,F}
• A tuple of schedules for the employees x = (x1, . . . ,xn)

The objective function is

f (x) = f1(x)× f2(x)(2.1)

such that

• f1(x) is the mean daily travel time for the employees in minutes
• f2(x) is the highest percent of employees in the office at any time

The goal is to minimize f (x). Any slight increase of f1(x) and/or f2(x) (i.e., closer to
α) will increase the value of f (x). Our goal is to minimize total commute time subject
to the constraint that the workforce presence in the office at any time should not exceed
35% of the total number of employees. To this end, we chose our objective function to be
f = f1× f2 and we examine the output produced by the algorithm for solutions that meet
the desired percentage.

The following criteria were stipulated:

• Each employee must have precisely one shift per day
• No specific working sub-groups that have to be present at a given time (e.g., incor-

porating meeting schedule)

2.2. The Algorithm. To solve our problem we use a genetic algorithm. Our goal is to min-
imize the objective function (also known as fitness) f (x). We have presented our algorithm
(pseudocode) to solve the problem in Algorithm 2.1.



OPTIMIZATION OF EMPLOYEE WORKING SCHEDULE AMID COVID-19 3

Algorithm 2.1 Our Algorithm (DataSet)

1: Initialization: Possible solutions are created from the given DataSet
2: Evaluation: Evaluate an individual using the objective function f (x)
3: loop <until the algorithm meets the stop criteria>
4: Selection: Pick two individuals as parents
5: Recombination: Apply crossover between parents
6: Mutation: Randomly (15%) change the newly created individual (child)
7: Evaluation: Apply Step 2 (Evaluation) to the parents and the child. If the child is

better than any of the parents then replace that parent by the child

2.2.1. Description.
• Initialization: There are a number of individuals in the initial population. An indi-

vidual x is a solution or a weekly work at office schedule for all employees. First we
set the population size or the number of individuals required in the population. Then
our algorithm starts generating individuals. For an individual, the algorithm selects
a start time and a shift length for each working day for each employee (see, Figure
3). During initialization, our algorithm evaluates the value of objective function for
each individual and finds the best individual among initial population.
• Evaluation: Now using Equation 2.1, we can calculate the mean daily travel time

for the employees in minutes as well as the highest percent of employees in the
office at any time. Therefore, we can get the value of the objective function f (x) by
multiplying these values.
• Generation: The number of iterations allowed in the algorithm is known as genera-

tion. On the other hand, we can consider this as the stop criteria. In each generation,
our algorithm has the following phases: Recombination, Mutation and Evaluation.
• Recombination: In our algorithm, we use crossover as a recombination procedure.

This is also known as one of the “mating” processes for two selected parents. First,
we pick two individuals A and B randomly from the population. Then the child
is produced by taking each employee’s schedule from either of its parents in the
following manner. Define

p(A,B) =
f (A)

f (A)+ f (B)
to be the probability of A “passing on its genes” compared to B, based on relative
fitness (which parent has the lowest objective function value). Then each row in
A×B should be coded to have a p(A,B) chance of taking the corresponding row
from A and a 1− p(A,B) chance of taking the row from B.
• Mutation: We allow a 15% chance of mutation for which one row of a matrix takes

on a random row within the starting parameters. Once offspring are generated, then
we keep the best two out of three of the offspring and two parents.
• Evaluation and selection: In this step, the algorithm compares the objective func-

tion values of the parents and the child. Let fA, fB, fC denote the value of the
objective functions for the parents A, B and the child C respectively. If fC is less
than fA and/or fB, then C replaces the parent with larger f value. Again, if C beats



4 A. MASANIKA1, A. SPIVAK2, C. HANRATTY3, W. M. ABDULLAH4

either of its parent, then we compare C with the best solution and update the best
accordingly. Therefore, the population converge to a better solution and the popu-
lation size remain the same.
• Output: The algorithm returns best as a solution after meeting the stop criteria.

3. NUMERICAL TESTING

In this section, we provide results from numerical experiments on selected test instances.

3.1. Data Sources. The data set for the experiments was generated from the Uber Move-
ment website [4]. Our original intention was to consider a city in Canada which would
be familiar to the PIMS program participants. Our first assumption was that mean travel
time for any trip would not vary much with the day of the work week but rather, signifi-
cant differences would be found based on the time of the day of travel. We focused on the
downloadable CSV files entitled Travel Times by Hour of Day (Weekdays Only) since as
the name indicates, this is precisely the data we were looking for.

Unfortunately regardless of the city chosen, there were represented only between 0-5
hours of departure for trips between any fixed origin and any fixed destination and those
hours were not well chosen to capture commute times. This is reflected in our finding that
it appears that for whatever city one searches for on the Uber Movement, regardless of its
size and population, and whatever point of departure one chooses in that city, downloaded
file, contains exactly 1,048,576 rows or trips.

Because the data was limited, we turned then to the Filtered Data on the website. The
Filtered Data does not provide zones but it does include trips to a chosen address from
many neighbourhoods, given by name. In particular, we chose San Francisco city in Cali-
fornia, USA, where other data, including geographic maps, extensive census information,
and information on distances between major sites, were available and could be evaluated
for reliability. With the combination of our original Uber data, the neighbourhood names
from the filtered data, and information from the 2016 US census, we were able to get for
each of the 39 neighborhoods, average travel times for the five different times of the day:
AM Peak Hours (7am-10am), Midday (10am-4pm), PM Peak Hours (4pm-7pm), Evening
(7pm-12am), Early Morning (12am-7am).

We chose as our office location the single largest office building in San Francisco, the
Salesforce Tower (see, Figure 1). We were able to get approximately 75% of the data
points this way, i.e., average commute time to and from each of the 39 neighborhoods for
each of five periods of the workday as listed in the previous paragraph. The remainder were
obtained from the available data by comparison with regard to distances and identifying
similar traffic conditions.

3.2. Input and output formats of our algorithm. In Figures 2 and 3 each row represents
one of the 200 randomly chosen employees. In Figure 2, the entries in the left-hand column
identify the neighborhood in which the corresponding employee lives. For example, the



OPTIMIZATION OF EMPLOYEE WORKING SCHEDULE AMID COVID-19 5

FIGURE 1. Location of the model work place and neighborhood

first employee lives in neighborhood 29, and the entries represent the commute time for
each hour in a workday. Figure 3, shows the output of our algorithm indicating the start
time and shift length for each employee.

FIGURE 2. The input format

FIGURE 3. The output format



6 A. MASANIKA1, A. SPIVAK2, C. HANRATTY3, W. M. ABDULLAH4

FIGURE 4. Algorithm Results

3.3. Experimental Environment. The experiments were performed on PC with 3.4 GHz
Intel Xeon CPU, 8 GB RAM running Windows. The implementation language is Python
and the code was compiled with a Jupyter Notebook version 6.0.3 compiler. Source code
available on GitHub at [1].

3.4. Results. After implementing the algorithm in Python, we ran a variety of tests to
establish its utility. These tests are recorded in Figure 4 in order of decreasing f (x). Each
test was run on a choice of P = population size, G = number of generations, and E =
number of employees. We recorded the value of f (x) initially, and after the chosen number
of generations.

These tests demonstrated the general trend that f (x) decreases with number of genera-
tions, G. Recall that a lower f (x) denotes a stronger schedule. This can be observed in
Figure 5 where fix the population size at 6, fix the number of employees at 200, and plot
number of generations against f (x).



OPTIMIZATION OF EMPLOYEE WORKING SCHEDULE AMID COVID-19 7

FIGURE 5. Decrease in Objective Function over Many Generations

While there is a general downwards trend, we notice that some higher generation sizes
also yield higher f (x) (for instance, when G = 10,30). This perceived discrepancy happens
because each test was run on a different initial population. These fluctuations suggest that
G < 100 is not sufficient to optimize the schedule. However, for G = 1000, there is a clear
decrease in f (x), compared to the other tested values.

In Figure 6, we take a closer look at the schedule produced after 1000 generations. Fig-
ure 6A shows the distribution of start times in this schedule. We can see that the start times
are relatively balanced with the exception of the first shift in a day. We posit that this bias
lowers the value of f2. In particular, since only employees who start at 7am can be in the
office at 7am, more employees are free to start at this time without negatively effecting the
percent of employees in the office.

Figure 6B depicts the distribution of shift lengths in this schedule, and shows that shorter
shift lengths are favoured. This will also lower the value of f2, as shorter shift lengths
means an employee will contribute to the percent of employees in the office during fewer
time slots.



8 A. MASANIKA1, A. SPIVAK2, C. HANRATTY3, W. M. ABDULLAH4

(A) Start Times (B) Shift Lengths

FIGURE 6. Analysis of a 200 Employee Schedule after 1000 generations.

We conclude our analysis by considering the quality of this 1000 generations schedule.
To do this, we compare this schedule to 20 randomly generated schedules, that is 20 sched-
ules who did not undergo optimization.

In a randomly generated schedule, total commute time ranged from 43-44 minutes. Af-
ter 1000 generations, the total commute time was reduced to 42.6 minutes. In a randomly
generated schedule, the maximum percentage of employees in the office at any time ranged
from 41 to 47 percent. Recall that the goal is f2 < α = 35%. After 1000 generations, this
was reduced to f2 = 38%, which is much closer to the target 35%. The test creating the
1000 generation schedule was run over night. We believe that given the time to run more
generations, the algorithm could produce an even better schedule.

4. CONCLUSION

The goal of this project was to create a workforce schedule that reduces commute time,
and the maximum percent of employees in the office. Such a schedule is difficult to calcu-
late by hand for a workplace with a large number of employees. We modeled this problem
to minimize the function f (x) = f1(x)× f2(x) where f1(x) is mean commute time and f2(x)
is highest percentage of employees in the office. We deployed the genetic algorithm to find
a schedule that minimizes this function. After running our algorithm for 200 employees
and 1000 generations, we found an improved schedule. This shows that it is possible to
automate schedule creation for large offices.

This work is an initial investigation during a two week workshop period. There are more
aspects that merit investigation as described below.

Data set: As part of a longer project we would seek out other sources of data in place or
to use along with the Uber Movement data.



OPTIMIZATION OF EMPLOYEE WORKING SCHEDULE AMID COVID-19 9

Initial Population Generation: Currently our algorithm assigns every employee a shift
every day. We would like to investigate letting employees have days without shifts, as this
could decrease commute time.

The Objective Function: We ran our algorithm with one choice of objective function.
We would like to try different objective functions to balance the optimization of f1 and f2.

The Mating Procedure: We would like to compare different mating procedures to con-
sider larger or smaller “chromosomes”. That is instead of taking entire rows from either
parent, it would be interesting to compare taking individual elements from the matrix.

Time: One constraint of the genetic algorithm is its long run time. We ran a variety of
tests over night, but we would like to run longer tests with higher populations and number
of generations.

Algorithm: In our two week investigation we had time to consider one algorithm. This
demonstrated that it is possible to use an algorithmic approach to creating these schedules.
However, the genetic algorithm has a long run time so it would be valuable to compare its
results to the results of other algorithms.

ACKNOWLEDGEMENT

We thank the organizing committee of the PIMS MathIndustry Workshop 2020 for their
many valuable training, guidelines and suggestions that helped to complete this project.
We also thank Professors Shawn Wang and Mina Enayat who were our academic mentors.
Finally, we thank Vakhtang Putkaradze, Kui Pan and Nisha Mohan from ATCO for their
continuous support as our mentors from industry.

REFERENCES

1. Team ATCO, The source code of the implemented genetic algorithm, https://github.com/
Team-Atco/COVID-Schedule-Optimization.

2. Jason Hicken, Juan Alonso, and Charbel Farhat, Introduction to multidisciplinary design optimization,
http://adl.stanford.edu/aa222/Home.html, 2012.

3. John H. Holland, Adaptation in natural and artificial systems: An introductory analysis with applications to
biology, control and artificial intelligence, MIT Press, Cambridge, MA, USA, 1992.

4. Uber Technologies Inc, Uber movement, https://movement.uber.com/.
5. Zulkifli Nopiah, Muhammad Khairir, Shahrum Abdullah, M. Baharin, and A. Arifin, Time complexity anal-

ysis of the genetic algorithm clustering method, Proceedings of the 9th WSEAS international conference on
Signal processing, robotics and automation (2010), 171–176.

1UNIVERSITY OF REGINA, CANADA, 2UNIVERSITY OF CALIFORNIA, BERKELEY, USA, 3UNIVERSITY

OF ALBERTA, CANADA, 4UNIVERSITY OF LETHBRIDGE, CANADA

E-mail address: 1ajm192@uregina.ca, 2ameliaspivak@gmail.com,
3hanratty@ualberta.ca, 4w.abdullah@uleth.ca

https://github.com/Team-Atco/COVID-Schedule-Optimization 
https://github.com/Team-Atco/COVID-Schedule-Optimization 
http://adl.stanford.edu/aa222/Home.html
https://movement.uber.com/

	1. Introduction
	2. Mathematical Model and the Genetic Algorithm
	2.1. Model
	2.2. The Algorithm

	3. Numerical Testing
	3.1. Data Sources
	3.2. Input and output formats of our algorithm
	3.3. Experimental Environment
	3.4. Results

	4. Conclusion
	Acknowledgement
	References

