
COMPRESSING THE TRANSACTION DATA OF BLOCKCHAIN

IVAN LAU, SHANG LI, EVAN MACNEIL, ALEXANDRA MCSWEEN,
ABHISHEK KUMAR SHUKLA, AND YANHONG XU

Abstract. Since its inception in 2009, the Bitcoin blockchain size has grown in
size to more than 295 GB and continues to grow by approximately 50 GB per
year. The decentralized, trustless framework of Blockchain requires participating
nodes to store the entire blockchain data. This keeps smaller computing devices
from participating fully in the network.

In this paper, we present methods to compress the blockchain in a lossless
fashion. Our main observations rely on finding redundancies in the Bitcoin trans-
action data which can be leveraged to decrease the blockchain size. We are able
to achieve a compression rate of approximately 20% by applying various compres-
sion schemes in concert. Further compression might be possible by using generic
compression algorithms on top of our compression scheme.

1. Introduction

Bitcoin, the most famous cryptocurrency, was first introduced in Satoshi
Nakamoto’s white paper in 2008 [Nak08Nak08]. Philosophically, the idea is to have a
peer-to-peer network of electronic cash without a centralized financial institution.
In this decentralized system, we can operate (mostly) anonymously but we cannot
trust anybody.

Figure 1. From [Nak08Nak08]

However, participating fully in the Bitcoin network remains inaccessible to most
people. To verify the history of transactions, a node needs almost 300 gigabytes
(GB) to store the blockchain [BloBlo]. To help “mine” the next block in the blockchain,
thereby confirming new transactions, substantial computing power is needed. Many
“wallet” apps allow users to trade in Bitcoin on the network without requiring large
amounts of storage space and CPU power, but they require the user to trust in third
parties, violating Bitcoin’s trustless model.

1

2 I. LAU, S. LI, E. MACNEIL, A. MCSWEEN, A.K. SHUKLA, AND Y. XU

The Divi Project [DivDiv] is a blockchain-based cryptocurrency and smart wallet
that seeks to make the cryptocurrency market accessible to all. It offers the first
and only genuinely one-click masternode deployment and five tiers of affordability.

The motivation behind our project is help improve this inaccessibility. The origi-
nal problem was posed by Germàn Luna from the Divi Project. We hoped to answer
the following questions:

• Determine to what extent a transaction graph can be compressed (for later
decompression) or what obstructions exist to its compression.
• What compression ratio can we achieve for an ordered sequence of crypto-

graphic hashes?

These questions were intentionally left vague to allow us the freedom to explore
and develop the project ourselves. We explored many options but in the end decided
to look at techniques and places to compress transaction data since they carry the
bulk of the storage strain.

For the purposes of our project, we worked on Bitcoin transactions, though we
expect our methods to be applicable to other cryptocurrencies, including the Divi
Project, as well.

1.1. Anatomy of the Bitcoin Blockchain. We can think of the blockchain as
the ledger. It consists of a linked list of blocks, chronologically ordered, and each
block contains a list of transactions. Besides transaction data, a block also contains
some metadata regarding the block itself. In detail, the components of the block
are as follows.

• The size of the block in bytes.
• The block header, which consists of:

– The version number of the block.
– The hash of the header of the previous block in the chain.
– The Merkle root of the transactions in this block. This is a combined

hash of all of the transactions.
– A timestamp indicating approximately when the block was mined.
– The target (also called “bits”). The smaller the target, the more difficult

the block is to mine
– A nonce. A value placed in the header so that the header’s hash is

smaller than the target.
• The transaction count, i.e. the number of transactions in the block.

Figure 2. From [TS16TS16]

3

• A list of transactions.

To mine a new block, a miner collects a number of transactions into a list and
computes their Merkle root [Mer80Mer80]. The Bitcoin protocol dictates what the target
value should be. The miner then iterates over several nonce values until one is found
that causes the block header’s hash to be lesser than the target value. It takes the
entire network of miners working together about 10 minutes to mine a block; if
miners work too fast or too slow, the Bitcoin protocol adjusts the target to keep
this time around 10 minutes.

Note that a block header depends on the hashes of the blocks before it, which
in turn depend on the transactions in those blocks. Therefore editing a previous
transaction requires recomputing all subsequent block headers. Meanwhile, the
mining network will be adding new blocks. Someone maliciously editing transactions
will not be able to catch up unless they have more CPU power than the rest of the
network combined.

1.2. Anatomy of a Transaction. Each block consists of one or more transactions.
The first transaction in a block is the coinbase transaction, which rewards miners
with BTC when adding a new block to the chain. Subsequent transactions reflect
people sending money to one another. A transaction contains the following data in
this order:

• The version number, either 1 or 2. Version 2 reinterprets the sequence
numbers, below.
• A flag that, if present, is always equal to 1 and indicates that input script

signatures are to be found in the witness section below11.
• The input count, or number of inputs in the transaction.
• Several inputs, the number of which must match the count above. Each

input in turn contains the following data:
– The previous transaction hash, the hash of the transaction whose output

this input will spend.
– The index of the output within that transaction, since a transaction

may have multiple outputs.
– The length of the script signature to follow.
– The script signature, a script that, when combined the output’s script

public key, must evaluate to true in order to spend the output.
– The sequence number, related to when a transaction becomes final.

• The output count, the number of outputs in the transaction.
• Several outputs, each of which contain the following data:

– A value, the amount of bitcoin to be transferred.
– The length of the script public key to follow.
– The script public key, a script that accepts an input and evaluate to

true or false. Only the intended recipient should be able to produce the
input that causes it to evaluate to true.

1“Segregated witness” (or “SegWit”) is an upgrade to Bitcoin to address transaction malleability
and block size limits. See [LLWLLW]

4 I. LAU, S. LI, E. MACNEIL, A. MCSWEEN, A.K. SHUKLA, AND Y. XU

• A list of witnesses (if the flag above was present) equal in number to the
number of inputs. For each witness we have the number of items to push
onto the stack (when evaluating scripts) followed by those items preceded
by their lengths.
• A lock time, related to when a transaction becomes final.

1.3. A Raw Transaction. A transaction appears on the Bitcoin network as a
serialized sequence of bytes. Here, is an example of one such serialized transaction,
written in hexadecimal:

020000000001020df23cb58292fa49a1c14083e74b8f79d5dee5e32f75a96798438e

3be32ab68b0100000017160014b3026ad925e5c05d901493a733edfac535413f97fe

ffffff11e522fdf84b31800d1504d88b0bcd2fa36dcf83d3304222cc1ada77bd9b9d

1b00000000171600141ab4829400dd414ef49069b984d542847fb06f65feffffff02

808417000000000017a914d084a31c88c447cf6600b3cef10c63514bc0a91c878020

13000000000017a9148becb7c6ba1a3cde90cfa91dd28d3143c0c412428702473044

022054b3e206d43deb741f2e581d312bec9739d55c1fe8340a53be631a8fc818a269

022060fdec6eb9ef9bd9f0aadd0175018853670ad5f3cc7b33dd42668d31c82b9fbd

01210285687bd88db3039d5878e120a28b4f62e4726a2c08638d9181fa9233a20acb

4a0247304402203cea8cf98b019bc55c6d92c571b86c9a2bf9430cd340a487a7ffea

75e14b3ff602204c16854d229b883ee1009d961727d03479e917e675efa4b6331583

d2b3e66b7c01210268aded79b39ba3fd5dae2c335cfcaa676c73c7679ab1fd424fe6

748a079fe427c2dd0900

A transaction in this format is called a raw transaction. Reading left-to-right, all
of the data from § 1.21.2 appear in order. If one knows the size in bytes of each piece
of data, one may extract the meaning from the raw bytes. For instance, the first 4
bytes always correspond to the transaction version number. If the next byte is 00,
then it is followed by 01, indicating the flag 0001 is present. Otherwise, if the next
byte is non-zero, it belongs to the input count (which is necessarily non-zero). If the
flag is present, it is then followed by the input count. The raw transaction above is
parsed in full in Table 11 on next page.

5

Table 1: A parsed transaction

Version 02000000

Flag 0001

Input count 02

Input 0

Prev. hash
0df23cb58292fa49a1c14083e74b8f79
d5dee5e32f75a96798438e3be32ab68b

Prev. index 01000000

Script length 17

Script sig.
160014b3026ad925e5c05d901493a733
edfac535413f97

Sequence no. feffffff

Input 1

Prev. hash
11e522fdf84b31800d1504d88b0bcd2f
a36dcf83d3304222cc1ada77bd9b9d1b

Prev. index 00000000

Script length 17

Script sig.
1600141ab4829400dd414ef49069b984
d542847fb06f65

Sequence no. feffffff

Output count 02

Output 0
Value 8084170000000000

Script length 17

Script pub. key
a914d084a31c88c447cf6600b3cef10c
63514bc0a91c87

Output 1
Value 8020130000000000

Script length 17

Script pub. key
a9148becb7c6ba1a3cde90cfa91dd28d
3143c0c4124287

Witness 0

Item count 02

Item 0
Length 47

Data

3044022054b3e206d43deb741f2e581d
312bec9739d55c1fe8340a53be631a8f
c818a269022060fdec6eb9ef9bd9f0aa
dd0175018853670ad5f3cc7b33dd4266
8d31c82b9fbd01

Item 1
Length 21

Data

0285687bd88db3039d5878e120a28b4f
62e4726a2c08638d9181fa9233a20acb
4a

Witness 1

Item count 02

Item 0
Length 47

Data

304402203cea8cf98b019bc55c6d92c5
71b86c9a2bf9430cd340a487a7ffea75
e14b3ff602204c16854d229b883ee100
9d961727d03479e917e675efa4b63315
83d2b3e66b7c01

Item 1
Length 21

Data

0268aded79b39ba3fd5dae2c335cfcaa
676c73c7679ab1fd424fe6748a079fe4
27

6 I. LAU, S. LI, E. MACNEIL, A. MCSWEEN, A.K. SHUKLA, AND Y. XU

Lock Time c2dd0900

We note that many of the integer values in Table 11 (namely the version number,
sequence numbers, indices, values, and lock time) are stored in little-endian format,
meaning the least significant byte appear first. As such, 8084170000000000 would
be read as the hexadecimal number 0x178480, or the decimal number 1541248,
indicating a transfer of 0.01541248 BTC.

2. Compression

2.1. Addresses. Addresses in Bitcoin take the form of ECDSA (Elliptic Curve Dig-
ital Signing Algorithm) private key-public key pairs, on the elliptic curve Secp256k1.
A private key is a randomly chosen 256-bit integer. The associated public key is ob-
tained by multiplying the curve’s standardized base point by the private key. Thus
the public key consists of the x and y coordinates, each 32 bytes, of a point on
the elliptic curve and can be used as a public address to which Bitcoins may be
sent. However, advancements in quantum computing may lead to private keys be-
ing recoverable from public addresses using Shor’s Algorithm. Bitcoin users now use
20-byte hashes of public keys, rather than the public keys themselves, as addresses.

Addresses appear in transaction scripts. For maximum privacy, a new address
should be used for each transaction. Bitcoin software can generate and manage a
multitude of addresses for the user. However, through our analysis we have found
that some addresses have been reused in more than 50,000 transactions. Moreover,
fewer than 232 addresses appear in the Bitcoin blockchain, so that we can store
addresses in a table and refer to them instead by a 4-byte index into this table.
This saves us space as long as addresses are reused sufficiently often. Indeed, we
find this to be the case.

We estimated the number of times an address is reused in the blockchain based
on a sample of addresses. We queried https://sochain.comhttps://sochain.com for the number of
transactions involving a list of 74,591 addresses. Table 22 shows part of the data.
The addresses are sorted lexicographically. We can see the first address was used
55,417 times in the sample, while the next two addresses were used 313 and 136
times, respectively.

Address Frequency
1111111111111111111114oLvT2 55,417

11112BvbV6fY4Y5rghDB1vnJtLGSjoB2n 313
1111VHuXEzHaRCgXbVwojtaP7Co3QABb 136
1111vP5eq5RCmRBeMwJGFW65owVtb3nM 67

11121FrRst9KCVrdM8SqLRzAFw3b1woSno 1
.

12pPUDiYU7JWejK6gT2Rr9NxS5QsGcF78f 6
12pPup7Pe1XGhpCLWHeGm9D9KBjLG4mvQv 1

Table 2. Address reuse frequency

https://sochain.com

7

Table 33 groups addresses by the number of times there were reused. We can see
that there were 53,967 addresses that were used exactly once each; 2,277 addresses
that were used exactly twice each; 1,117 addresses used exactly three times teach;
and so on. We found that the most frequently appearing address was reused 59,887
times in the sample. Furthermore, 72% of addresses were used only once while 28%
of addresses were reused.

of uses # of addresses % of sample
1 53,967 72.0021%
2 2,277 3.0379%
3 1,117 1.4903%
4 892 1.1901%
5 839 1.1194%

.
20,931 1 0.0013%
26,484 1 0.0013%
32,269 1 0.0013%
55,417 1 0.0013%
59,887 1 0.0013%

Table 3. Addresses by reuse frequency

If this sample is representative of the whole blockchain, then given that there
are approximately 1.5× 109 outputs [BitBit], we can estimate the number of addresses
as follows. Let x be the number of addresses in the Bitcoin blockchain. Then out
of all the outputs 0.720021x are the number of addresses appearing exactly once,
0.030379x are the number of addresses appearing exactly twice, and so on. We solve
for x in

x (1× 0.720021 + 2× 0.030379 + 3× 0.014903 + . . . + 59887× 0.000013) = 1.5×109

and find that there are approximately x = 42, 943, 936 distinct addresses appearing
in the blockchain. This is much fewer than 232 addresses, so we can store these
addresses in a table and refer to them by a 4-byte index instead. Implementing such
a table would cost 4x bytes, about 819 MB. However, replacing 20-byte addresses
by 4-byte indices saves us 16 bytes per output, approximately 22.4 GB. The net
savings are about 21.6 GB.

2.2. Transaction Hashes. Each transaction input refers to an unused output of
an earlier transaction through the corresponding 32 bytes transaction hash (TXID).
Therefore, transaction hashes will appear multiple times in the blockchain. Using
data from [BitBit] and [TotTot], we find that there are approximately 1.4 × 109 inputs
(or spent outputs), but only about 6.0× 108 unique TXIDs. Therefore the average
TXID is used 2.3 times.

Similar to § 2.12.1, we can store TXIDs in a table and refer to them instead by a
4-byte index. Implementing this table would cost 32 bytes per unique TXID, about

8 I. LAU, S. LI, E. MACNEIL, A. MCSWEEN, A.K. SHUKLA, AND Y. XU

17.9 GB. However, we save 28 bytes per input, about 36.5 GB in total. The net
savings are about 18.6 GB.

It is also worth mentioning that transaction hashes have a kind of “recursive
structure” that can be exploited for further compression later on. Namely, since
hashing is a deterministic operation and transactions depend on previous transac-
tions’ hashes, a different kind of lookup table might be possible where some hashes
are stored and others are derived at decompression time by hashing decompressed
data.

2.3. Scripts. A script is a list of instructions (also called script words, opcodes,
or commands). It is a stack-based language processed from left to right. Every
transaction input and output contains a script. In order for an input to spend an
output, the input and output scripts are combined into one script, then evaluated.
The spending is permitted if the script executes without error and leaves the value
“true” on the stack.

Most scripts follow one of a few standardized forms, the most common of which
is Pay to Public Key Hash (P2PKH). In P2PKH, the input script pushes a digital
signature and public key onto the stack while the output script hashes the public
key, compares it to an expected values, then verifies the signature.

In a script, data to be pushed to the stack is generally enclosed in angle brackets
<> and data push commands are omitted while non-bracketed words are opcodes.
For the sake of clarity, we include length of the script (lenScript) as well as push
commands (PUSHBYTES) here. We now list five of the most common standardized
scripts appearing in Bitcoin transactions, as well as how they appear in encoded in
a raw transaction. Besides these five types, there are also multi-signature scripts
(MULTISIG), unspendable outputs (OP RETURN), and non-standard scripts.

PUBKEY
lenScript PUSHBYTES[65] <pubKey> OP CHECKSIG

4341<pubKey>ac

P2PKH

lenScript OP DUP OP HASH160 PUSHBYTES[20] <pubKeyHash>
OP EQUALVERIFY OP CHECKSIG

1976a914<pubKeyHash>88ac

P2SH
lenScript OP HASH160 PUSHBYTES[20] <scriptHash> OP EQUAL

17a914<scriptHash>87

P2WPKH
lenScript OP 0 PUSHBYTES[20] <pubKeyHash>

160014<pubKeyHash>

P2WSH
lenScript OP 0 PUSHBYTES[32] <witScriptHash>

220020<witScriptHash>

Table 4. Standard scripts

From Table 44, we observe that these five standard scripts have fixed formats
except where the public keys may vary. For instance, a P2PKH script is always
26 bytes, starts with the bytes 1976a9a4, and ends with the bytes 88ac. One can
replace this with a single byte that indicating it is a P2PKH script, followed by

9

Script type Compressed script Bytes saved
PUBKEY 00<pubKey> 2
P2PKH 01<pubKeyHash> 5
P2SH 02<scriptHash> 3
P2WPKH 03<pubKeyHash> 2
P2WSH 04<scriptHash> 2
Other 05<script> -1

Table 5. Compressed scripts

the 20-byte hash, which may vary from script to script. We can do likewise for the
other standard script types. Table 55 summarizes how we may compress these scripts.
There is a drawback in that we would be required to reserve a byte to indicate if a
script is not of one of these five handled types, followed by the uncompressed script.
This costs us one byte per unhandled script, but this cost is offset by the fact that
these unhandled types are far outnumbered by the others.

The savings in Table 55 are per output with a script of the given type. Using data
from [BitBit], we compute the expected total savings by multiplying the per-output
savings by the number of outputs with the given script type. For instance, at the
time of writing, there are 1,044,567,464 P2PKH scripts, so that we can save 4.86 GB
compressing P2PKH scripts alone. There are 46,788,036 scripts not of the above
five types, costing us about 44.6 MB with our compression scheme. Putting it all
together, we expect a net savings of 5.91 GB.

2.4. Version Number, Flag, Lock Time, and Sequence Numbers. Each
transaction has a version number, stored in 4 bytes. However, there are presently
only two transaction versions: version 1 and version 2. The transaction version
can therefore be represented by a single bit until such a time as a new version is
created. Compressed data must be written in whole bytes at a time to file, but we
observe that there is other information in a transaction that can also be represented
by a single bit — namely the flag and information pertaining to the lock time and
sequence numbers — and we collect these all into one byte together.

A transaction sometimes includes a flag that, if present, takes 2 bytes and is always
equal to 0x0001. This flag is used to indicate whether the transaction includes
any witness data (used in scripts such as P2WPKH and P2WSH). As this can be
represented by one bit, we store this in the same byte as the transaction version
number.

Each transaction has a 4-byte “lock time” and each input has a 4-byte “sequence
number”. The lock time and sequence number relate to when the transaction be-
comes final. The lock time is usually assigned the minimum value 0x00000000 while
the sequence numbers are usually the maximum value 0xffffffff. We use one bit
to represent whether the lock time is zero or not and store this bit with the version
number and flag. We write the lock time to the compressed file only when it is
non-zero. Similarly, we use one bit to represent whether all sequence numbers are
maximal or if one sequence number is non-maximal. If they are all maximal, then we

10 I. LAU, S. LI, E. MACNEIL, A. MCSWEEN, A.K. SHUKLA, AND Y. XU

do not write them to the compressed file. Moreover, if the sequence number is not
maximal, then we also observe that it is usually some number close to 0xffffffff.
Indeed, we notice that the sequence number is usually between 0xffffff00 and
0xffffffff. These we can represent with a single byte by storing instead their
distance from 0xffffffff.

In total, we save

• 3 bytes per transaction by compressing the version number down to 1 byte.
• 2 bytes per transaction with the flag present.
• 4 bytes per transaction with a lock time of 0x00000000.
• 4 bytes per input in a transaction in which all sequence numbers are 0xffffffff.
• 3 bytes per input in a transaction in which all sequence numbers are between
0xffffff00 and 0xffffffff, inclusive, but where some sequence numbers
is strictly below 0xffffffff.

Based on a sample of 261, 003 transactions between August 17 and 18, 2020, we
find that

• 20% of transactions had the flag present.
• 76% of transaction had a lock time of 0x00000000.
• 68% of inputs were in transactions where all sequence numbers are 0xffffffff.
• 31% of inputs were in transactions with a sequence number below 0xffffffff,

but where all sequence numbers are no less than 0xffffff00.

If this sample is representative of the transactions in the blockchain, then given
that there are now more than 560 million transactions and 1,380 million inputs (or
spent outputs) [BitBit], we can expect to save at least

560 (3 + 2× 0.20 + 4× 0.76) + 1, 380 (4× 0.68 + 3× 0.31) = 8, 643.4

8,643.4 million bytes, or about 8.05 GB.

2.5. Values. Each output in a transaction includes a “value” that represents the
number of satoshis (100 millionths of a bitcoin) being transferred to the output
address. This value is stored as an 8-byte signed integer, allowing up more than
9 × 1018 satoshis to be sent. However, Bitcoins protocols dictate how new coins
enter the system and place a hard limit of 2.1 × 1015 satoshis. An 8-byte value
allows one to send more satoshis than can ever exist. Of course, we also find that
most of the values being sent are much smaller than even 2.1 × 1015 and the vast
majority fit in a 4-byte unsigned integer. Hence, one approach to compressing the
blockchain is to put these values in a data structure whose size is adaptable as
needed.

We queried 54, 947, 133 outputs from the Bitcoin blockchain to gather statistics
on the sizes of values being sent. We found the following.

(1) 45,402,811 values (82.6%) are larger than 2 bytes.
(2) 23,631,735 values (43.0%) are larger than 3 bytes.
(3) 2,600,279 values (4.7%) are larger than 4 bytes.
(4) 18,532 values (0.03%) are larger than 5 bytes.
(5) No values are larger than 6 bytes.

11

Figure 3. Proportion of values that can be covered by each data size.

We can see that over 95% of the values can be covered by 4-byte unsigned inte-
gers. Even for 3 bytes, 57% of the data can be covered. We propose the following
strategies:

(1) Encode the values with 2 kinds of data types: 4 bytes and 8 bytes unsigned
integers. In this case, we need one extra bit as flags for decompression
indication.

(2) Encode the values with 4 kinds of data types: 3 bytes, 4 bytes, 6 bytes and
8 bytes unsigned integers. In this case, we need two extra bits as flags for
decompression indication.

(3) Encode the values with 4 kinds of data types: 2 bytes, 3 bytes, 4 bytes and
8 bytes unsigned integers. In this case, we need two extra bits as flags for
decompression indication.

(4) Encode the values with 8 kinds of data types: 1 byte, 2 bytes, . . ., 8 bytes
unsigned integers. In this case, we need three extra bits as flags for decom-
pression indication.

Assuming this sample is representative of the transactions in the blockchain, then
given that there are approximately 1.5 × 109 total outputs [BitBit], we can expect to
save

• about 5.5 GB of data if we use method 1;
• about 6.5 GB of data if we use method 2;
• about 6.4 GB of data if we use method 3; or
• about 6.4 GB of data if we use method 4.

12 I. LAU, S. LI, E. MACNEIL, A. MCSWEEN, A.K. SHUKLA, AND Y. XU

It seems that method 2 is the best among these approaches, which could give us
an approximate 2% compression rate, based on the fact that the size of the current
Bitcoin blockchain is about 300 GB.

3. Implementation

We have created a toy implementation of some of the compression schemes de-
scrived in § 22, available at http://github.com/emmacneil/btcompresshttp://github.com/emmacneil/btcompress. The
blockchain, when downloaded, is split up into multiple .dat files, approximately
128 MB each. Our toy implementation compresses and decompresses a single .dat
file at a time. It implements compression of transaction hashes, version numbers,
flags, lock times, sequence numbers, and values as outlined in § 2.22.2, § 2.42.4, and § 2.52.5.
Due to time constraints, we did not implement compression of addresses and scripts
as in § 2.12.1 and § 2.32.3.

We were able to compress the 128 MB file down to 117 MB, 91.4% of its original
size. Of course, by implementing the rest of the methods described in this paper,
we would bring that figure lower. We note also that the results are dependent on
the choice of .dat file. Files corresponding to early blocks in the blockchain have
proportionately fewer transactions and would yield worse results. Conversely, by
compressing a single file at a time, we cannot take full advantage of the repetition
of hashed values. By compressing multiple files at a time, we could achieve better
results.

4. Conclusion

In § 22, we analyzed the repeated or redundant patterns in the Bitcoin blockchain.
We then discussed approaches to compression based on those patterns. The com-
pression rates we can get from each of those approaches are summarized in Table 66.
If applied to to the whole blockchain, we expect a savings of about 58.1 GB, a com-
pression rate of approximately 19.6%. In section § 33, we implement a few of the
methods from § 22 to a portion of the blockchain and achieve a compression rate of
8.6%.

Patterns Sections Compression Amount Compression Rate∗

Indexing Repeated Addresses 2.12.1 21.6 GB 7.3%
Indexing Repeated Transaction Hashes 2.22.2 16.0 GB 5.4%
Indexing Scripts 2.32.3 5.9 GB 2.0%
Version Number, Flag, Lock Time, and Sequence Numbers 2.42.4 8.1 GB 2.7%
Compressing Redundant Values Data Type 2.52.5 6.5 GB 2.2%
Overall 58.1 GB 19.6%

∗ Compression rate is obtained as dividing the compression amount by the
total block size 295 GB by the time of Aug 25, 2020 [BloBlo].

Table 6. Separated Compression Efficiency Achieved by Each Approach

Our methods of compression are applicable not only to the Bitcoin blockchain, but
also other cryptocurrencies such as the Divi Project where transaction data includes
repeated values and values represented by more space than is needed. Our methods

http://github.com/emmacneil/btcompress

13

may also be applied to data analyses that do not require the entire blockchain data.
We consider the case of an analyst who wishes to study the graph structure of the
blockchain’s transactions and may be interested in storing transaction hashes and
addresses of senders and receivers, but not scripts and version numbers. Applying
some of our compression methods may mean the difference between their data fitting
in RAM or not, which would greatly speed up the analysis.

5. Future Work

There are still more simple analyses that can be done. The witness section of a
transaction may contain compressible data, but we have not explored this, due in
part to not understanding what data was contained within until late in the project.
Indeed, the witness section contains addresses and hashes much like input script
signatures.

An output script typically contains a hashed value. An input that spends it has
in its script the unhashed value. The former can be derived from the latter, meaning
that we do not need to store both. A full analysis of how much can be saved has
not been done.

In § 2.32.3, we focused on compressing output scripts. A P2SH output script may
correspond to an input whose script, in turn, contains a P2PKH script. That is, for
some input scripts, the methods of § 2.32.3 may be applicable.

Some output scripts may be classified as OP RETURN scripts. These outputs are
unspendable. It is possible to mark some bitcoins as permanently unspendable, a
way of burning digital money. However, an OP RETURN script usually comes with
a value of 0 BTC, while the script itself contains metadata written in plain English,
Chinese, or some other language. Natural plain text can be compressed effectively
using variable-length encoding algorithms such as Huffman Coding, another avenue
for compressing the blockchain. However, OP RETURN scripts are only a small
minority of outputs (about 3%), and we expect such compression to save hundreds
of megabytes out of 295 GB.

We have focused primarily on exploiting the particular structure of Bitcoin’s file
format to achieve compression. We have proposed, among other things, to place
frequently reused values such as transaction hashes and addresses into lookup tables.
These tables, in turn, may be amenable to further compression by more general
compression algorithms. This returns us to one of the original questions posed to us:
“What compression ratio can we achieve for an ordered sequence of cryptographic
hashes?” One could analyze how different generic compression algorithms perform
on a sequence of hashes and whether reordering the hashes impacts the results.

Finally, even if we could achieve a compression ratio of 50%, the compressed block
chain would still be over 100 GB in size, too large for small devices with storage space
constraints. One might ask whether a cryptocurrency can be designed that allows
even small devices to participate as full nodes on the network, requiring a blockchain
on the order of at most a few gigabytes. We wonder whether a new cryptocurrency
model can be defined whereby individual nodes can independently verify the validity
of transactions without storing the entire history of transactions or depending on

14 I. LAU, S. LI, E. MACNEIL, A. MCSWEEN, A.K. SHUKLA, AND Y. XU

third parties. Perhaps an imaginative application of concepts such as zero-knowledge
proofs, cryptographic set membership testing, homomorphic encryption, and Bloom
filters would permit such a scheme.

Acknowledgments

The authors would like to thank our industry mentor, Germàn Luna, from the
Divi Project for his guidance, support, and expertise. We’d also like to thank our
academic mentor, Cuneyt Akcora, from the University of Manitoba for his helpful
insight and advice. Finally, we’d like to thank Mitacs and the M2PI team and
especially Kristine Bauer for organizing this amazing opportunity.

References

[Bit] Bitcoin transaction output statistics. https://bitaps.com/statistic/outputshttps://bitaps.com/statistic/outputs. Accessed:
2020-08-25.

[Blo] Blockchain size. https://www.blockchain.com/charts/blocks-sizehttps://www.blockchain.com/charts/blocks-size. Accessed: 2020-08-
23.

[Div] Divi project. https://diviproject.orghttps://diviproject.org.
[LLW] Eric Lombrozo, Johnson Lau, and Pieter Wuille. Segregated witness (consensus layer).

https://github.com/bitcoin/bips/blob/master/bip-0141.mediawikihttps://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki. Accessed: 2020-
09-03.

[Mer80] Ralph C. Merkle. Protocols for public key cryptosystems. In IEEE Symposium on Security
and Privacy,1980, pages 122–134. IEEE Computer Society, 1980.

[Nak08] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdfhttps://bitcoin.org/bitcoin.pdf, 2008.

[Tot] Total number of transactions. https://www.blockchain.com/charts/n-transactions-totalhttps://www.blockchain.com/charts/n-transactions-total.
Accessed: 2020-08-23.

[TS16] F. Tschorsch and B. Scheuermann. Bitcoin and beyond: A technical survey on decentral-
ized digital currencies. IEEE Communications Surveys Tutorials, 18(3):2084–2123, 2016.

E-mail address: iplau@sfu.ca

E-mail address: shang.li1@ucalgary.ca

E-mail address: macneil.evan@ucalgary.ca

E-mail address: amcsw087@uottawa.ca

E-mail address: shukla2@ualberta.ca

E-mail address: yanhong.xu1@ucalgary.ca

https://bitaps.com/statistic/outputs
https://www.blockchain.com/charts/blocks-size
https://diviproject.org
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://bitcoin.org/bitcoin.pdf
https://www.blockchain.com/charts/n-transactions-total

	1. Introduction
	1.1. Anatomy of the Bitcoin Blockchain
	1.2. Anatomy of a Transaction
	1.3. A Raw Transaction

	2. Compression
	2.1. Addresses
	2.2. Transaction Hashes
	2.3. Scripts
	2.4. Version Number, Flag, Lock Time, and Sequence Numbers
	2.5. Values

	3. Implementation
	4. Conclusion
	5. Future Work
	Acknowledgments
	References

